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Abstract 
 
 The Pairwise Comparison technique is a general 
purpose estimation approach for capturing expert 
judgment.  This approach can be generalized to a 
probabilistic version using Monte Carlo methods to 
produce estimates of size distributions.  The 
probabilistic pairwise comparison technique enables 
the estimator to systematically incorporate both 
estimation uncertainty as well as any uncertainty that 
arises from using multiple historical analogies as 
reference modules.  In addition to describing the 
methodology, the results of the case study are also 
included.  This paper is an extension of the work 
presented in [1] and will show how the original 
software size estimates compared to the actual 
delivery size.  It will also describe the techniques 
used to modify the approach based on lessons 
learned.  The results because they are based on only 
one case do not validate the effectiveness of the 
proposed approach but are suggestive that the 
technique can be effective and support the conclusion 
that further research is worth pursuing. 
 
1. Introduction 
 

Software cost estimates are typically required in 
the early stages of the life-cycle when requirements 
and design specifications are immature.  Under these 
conditions, the production of an accurate cost 
estimate requires extensive use of expert judgment 
and the quantification of significant estimation 
uncertainty.  Research has shown that under the right 
conditions, expert judgment can yield relatively 
“accurate” estimates [2].  Unfortunately, most expert 
judgment-based estimates do not meet these 
conditions and frequently degenerate into outright 
guessing.  At its best, expert judgment is a disciplined 
combination of a ‘best guess’ and historical 
analogies.  Pairwise comparison matrices provides a 
formal, systematic means of extracting, combining, 

and capturing expert judgments and their relationship 
to analogous reference data [3].   

The use of matrices of pairwise comparisons as 
an approach for deriving a cardinal ranking vector 
from subjective paired comparisons was first 
introduced by Saaty in 1977 as part of the Analytical 
Hierarchy Process (AHP) [4].  AHP, as originally 
proposed, is a decision-making or prioritization 
technique.  The usefulness of this technique for 
software size estimation was recognized in the mid-
eighties [5, 6].  Bozoki provided a more detailed 
description of his approach in [7].  Using a pairwise 
comparison matrix to estimate software size requires 
an expert’s judgment as to each module’s  relative 
bigness compared to one another.  The effectiveness 
of this approach is supported by experiments that 
indicate that the human mind is better at identifying 
relative differences than at estimating absolute values 
[8,9].  In this paper, for ease of exposition, pairwise 
comparison matrices will be called judgment 
matrices following [10].   

An opportunity to apply the pairwise comparison 
technique arose when a cost estimate was required 
for a mission critical ground software project.  The 
team wanted to estimate the effort for its next 
software development task based on a recently 
completed development activity.  The software team 
members wanted to be more rigorous in how they 
approached the estimating task.  They also imposed a 
number of constraints.  They conceptualized their 
system in terms of delivered capabilities and resisted 
sizing a software system by lines of code or function 
points.   Hence we could not ask them to directly size 
their system.  Since there were numerous sources of 
potential risk and uncertainty associated with the next 
delivery, the technical staff wanted to provide ranges 
for the ratio comparisons in order to visualize the 
actual probability distribution for the estimates.  In 
addition, they had multiple sources of historical 
software size data that could be incorporated.  While 
more information is generally considered helpful, this 
particular situation presented some complexities that 



 

 

the standard approach did not address well when 
incorporating uncertainty.  Therefore, the pairwise 
technique had to be adapted to address distributional 
inputs in the context of multiple reference analogies. 

A description of how this technique was applied 
to effort estimation in combination with software cost 
models is provided in [1].  This paper describes the 
approach and algorithms used to generalize the paired 
ratio comparison matrix technique in order to utilize 
information inherent in multiple estimates, multiple 
reference projects, and estimator range information 
for the purpose of generating estimated size 
distributions.  In addition, this paper details the 
application of this technique in the context of an 
actual software project, in order to assess its 
effectiveness.  
 
2. Pairwise Comparison Technique  
 

Creating a judgment matrix involves creating an 
n x n matrix (Anxn=[aij]), where n is the number of 
entities (for software, this could be modules, use 
cases, requirements, etc.), being compared.  Each 

element, aij, in the matrix is an estimate of the 
relative size of entity i with respect to entity j, that 

is
j

i

Size
Size

.  The properties of a judgment matrix 

require that elements be: 
(1) reciprocal, aij = 1/aji, which means that entity i 

is aij times bigger than entity j, then entity j is 
1/aij times smaller than entity i; 

(2) the same size as itself, which means that all 
diagonal elements aii = 1.  

 The implication of these properties is that only the 
upper or lower triangle of the judgment matrix must 
be filled in.  For example, see Table 1, which is a 
judgment matrix with estimates of the relative 
software size of four modules.  The values in Table 1 
indicate that Module 1 is two times as big as Module 
2, three times bigger than Module 3, and four times 
bigger than Module 4, and so forth.  Note that there is 
no a priori reason that all the values in the upper 
triangle are greater than 1. 

 

Table 1.  Example judgment matrix 
 Module 1 Module 2 Module 3 Module 4 
Module 1  2.00 3.00 4.00 
Module 2   1.50 2.00 
Module 3    1.50 
Module 4     

Based on Conditions 1 and 2 above, the matrix can be 
completed as follows: 

 

Table 2.  Example completed judgment matrix 
 Module 1 Module 2 Module 3 Module 4 
Module 1 1.00 2.00 3.00 4.00 
Module 2 0.50 1.00 1.50 2.00 
Module 3 0.33 0.67 1.00 1.50 
Module 4 0.25 0.50 0.67 1.00 

One way to interpret the judgment matrix is that 
each column yields a different ranking vector for the 
purpose of determining the relative size of the four 
entities.  Each vector is normalized such that the 
module that corresponds to itself (the diagonal 
elements) is always 1, and it is the reference module 
against which all comparisons in the same column 
are made.  Therefore, column 1 indicates that module 
2 is half as big as module 1; module 3 is 33% of the 

size of module 1; and module 4 is 25% of module 4.  
Each column can be interpreted in this manner.  In 
Table 2, there are four different rankings (an n x n 
matrix yields n independent ranking vectors).  In a 
case where different ranking vectors have different 
rank orders for each entity, there is more estimation 
uncertainty around the entities being compared.   

A special case exists when a judgment matrix is 
perfectly consistent.  This occurs when 



 

 

ikjkij aaa =×  for all i, j, k.  If a judgment matrix is 

consistent, then each vector is equivalent to all the 
others, or each vector can be transformed into the 
other via a linear transformation.  This means that 
there is really one vector of unique information.  
Time has been wasted in making all of these pairwise 
comparisons in the example, since only four numbers 
needed to be guessed and not six.  Fortunately, it 
turns out that judgments are rarely consistent, unless 
the estimator is cheating. 

More frequently, inconsistent matrixes will result 
such as that illustrated in Table 2.  Note that although 
column 1 and column 2 can be linearly transformed 
into the other, Table 2 is an inconsistent matrix 
because columns 3 and 4 are linearly independent or 
not consistent with column 1 or 2.  Hence Table 2 
provides 3 unique vectors from which a final estimate 
can be generated. 

 There have been a number of mathematical 
procedures proposed for deriving a single ranking 
vector from an inconsistent judgment matrix.  These 
produce numbers that meet the conditions of a ratio 
scale.  This means the slope of a line has been 
defined but the intercept or origin of the scale is still 
unknown.  Therefore, the actual sizes of the modules 
are unknown, and only their relative sizes are known.  
However, as long as at least one of the modules used 
to derive judgment matrix is an historical analogy, 
that module can be used to determine the intercept or 
origin to determine the estimated sizes for each 
module. 

 The original approach proposed by [4] was to 
use the Perron-Frobenius right eigenvector.  Research 
has shown, however, that this is one of the worst 
techniques to use [11].  There are many potential 
solutions to this problem.  The Geometric Mean 
method, which is very easy to calculate, has been 
advocated by many authors for various reasons.  
[11,12].  Miranda chose to use the geometric mean 
procedure because of its simplicity and the results 
achieved in during experimentation with thirty 
participants [13].  Therefore, the geometric mean is 
the recommended approach used in this case. 

The Geometric Mean is calculated as 
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that meets the requirements of a ratio scale.  The 
example in Table 2 would yield the vector 
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 As an example, the 2.21 is derived from 
4/1)4321( ××× . 

Once the ratio scale vector is calculated, the size 
of each known entity can be calculated using at least 
one known historical analogy to normalize the vector, 
and in essence define the origin for the ratio scale.  
This allows one to convert the vector to cardinal 
numbers yielding absolute values of the size 
estimates.  The size of at least one of the elements in 
the ratio scale is needed as a reference to derive a 
multiplier m  

ref

ref

v

Size
m = , ref is one of the modules i through n 

which is  used to calculate the size of the other 
elements.  The formula is as follows: 
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 Using the example in Table 2 and assuming the 
reference module is v3 at 2000 lines of code, this step 
would result in the following: 

m = 2000/0.76 = 2632.15 
Size1 = 2632.15 x 2.21 = 5826 
Size 2 = 2632.15 x 1.11 = 2913 
Size 3 = 2632.15 x 0.76 = 2000 
Size 4 = 2632.15 x 0.54 = 1414 

In summary an estimate of size using pairwise 
comparison matrices can be generated using four 
steps: 

1) Estimate the relative size of all modules  
2) Derive the judgment matrix 
3) Compute the geometric mean across 

each row in the matrix 
4) Derive size estimate by normalizing 

values to the reference module  
 



 

 

3. Probabilistic Pairwise Comparison 
Technique  

 
Two major adaptations to the basic pairwise 

comparison technique described above were made: 
(1) the incorporation of distributions for pairwise 
judgments and (2) the use of multiple reference 
modules.  There are many distributions that could be 
used.  A log normal distribution would make it 
possible to derive a closed form solution.  However, 
it is difficult for engineers to estimate the mean and 
variance of a log normal distribution.  The use of 
estimation ranges (low, mode, and high) was a found 
to be a more practical approach.  Since it is important 
for a software manager and engineers to have a clear 
understanding of their inputs and estimates, the 
simplest distribution cognitively is the triangular 
distribution.  That is, 

( )maxmodeminTriPDFa ij ,,~  

where the element aij is a triangular distribution 
TriPDF with a minimum variate (min), a peak variate 
(mode), and a maximum variate (max).  This requires 
the use of a Monte Carlo technique to combine the 
different distributions, but with modern computers 
and software that is not a difficult task.  

To illustrate the technique the example from the 
previous section will be used.  The first step is that 
the subjective judgments in Table 1 can be entered as 
distributions as shown in Table 3.  Here are three 
elements as distributions and three as point values.

 

Table 3. aij as distributions 
 Module 1 Module 2 Module 3 Module 4 
Module 1  2 3 TriPDF (3, 4, 6) 
Module 2   1.5 TriPDF (2, 2.5, 3) 
Module 3    TriPDF (1, 1.5, 3) 
Module 4     

 

In Table 3, element a14 and element a34 are entered as 

distributions with ( )6 4, 3,~14 TriPDFa  

and ( )3 1.5, 1,~34 TriPDFa , respectively.  The 

element 14a would be interpreted as Module 1 is 
most likely 4 times bigger than Module 4, but could 
be as much as 6 times bigger, or at a minimum, it 
could be the three times the size.  The element 

34a would be interpreted as Module 3 is most likely 

1.5 times bigger than Module 4, but could be as much 
as 3 times bigger, or at a minimum, it could be the 
same size.  Random draws are made from these 
distributions to determine the geometric mean vector, 
which becomes: 
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The result is that each element in the geometric 
mean vector is now a distribution vPDFi. 

Another major adjustment to the basic pairwise 
technique is the manner in which multiple reference 
software modules are incorporated.  The basic 

method described above works well for the case 
where there is a single reference analogy.  However, 
having multiple reference analogies with the typical 
case of an inconsistent judgment matrix creates a 
dilemma.  A different total size estimate is generated 
depending upon which reference module is used.  
The solution proposed here involves incorporating 
the multiple references by capturing the different 
possible reference values as a distribution.  This way 
the basic Monte Carlo structure that has been set up 
here can be used as a general purpose approach for 
any type of ranking problem.   

A triangular distribution is used to capture the 
differences between the multiple reference-derived 
multipliers 

irefPDFm through 
xrefPDFm  

i

i

refPDF

ref

irefPDF v

Size
m =  

If the matrix was consistent, having multiple 
references should theoretically result in the same 
multiplie r value 

nPDFiPDFPDF mmm ==*
. 

A triangular distribution is merely a simple 
method of capturing the multiple references.  



 

2The means of the distributions are shown in the cells.   

Therefore, one solves for a single distribution of the 

multipliers *
PDFm  
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for i through x number of references.   

For example, the first four columns in Table 4 
are the completed judgment matrix shown in Table 3 
based on  

( )maxmodeminTriPDFa ij ,,~ .  The gray 

shaded cells of the matrix are completed using the 
properties of a judgment matrix.  Therefore, elements 
a11 and a22 are the same size as itself, 1.  Element a42 
is the reciprocal of element a24, which is  

)3 2.5, ,2(
1

TriPDF
. 

The remainder of the judgment matrix was 
completed in a similar manner. 

Table 4.  Completed matrix and multipliers based on distributional inputs2 

  Module 1 Module 2 Module 3 Module 4 Geometric 
Mean PDF 

(vPDFi) 

References 
(Sizerefi) 

Multiplier PDF 
(Sizerefi/vPDFrefi) 

Size Estimate 
PDF 

Sizei x (m*PDF) 
Module 1 1.00 2.00 3.00 4.33 2.26 6000 2657.1  
Module 2 0.50 1.00 1.50 2.50 1.17 3000 2563.72  
Module 3 0.33 0.67 1.00 1.83 0.80 2000 2503.36  
Module 4 0.23 0.40 0.545 1.00 0.47   To be solved for 

Using the algorithm described above yields the 
geometric mean dis tribution function, whose mean 
values are shown in the Geometric Mean PDF 
column of Table 4, 
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Having multiple references and an inconsistent 
judgment matrix results in many multipliers of 
different values.  For example, given that the actual 
sizes of Modules 1, 2, and 3 are 6000, 3000, and 
2000 lines of code respectively, and using the 
average values shown in  Table 4, the expected 
multipliers would be 

1.265726.26000)(
111

=÷=÷= refPDFrefrefPDF vSizemExpected , 

7.256317.13000)(
222

=÷=÷= refPDFrefrefPDF vSizemExpected , and 

4.250380.02000)(
333

=÷=÷= refPDFrefrefPDF vSizemExpected . 

If the multiplier derived from Module 1 is 
selected, the expected size of Module 4 would be  

125947.01.2657)( 4 =×=SizeExpected , 
while if the multiplier derived from Module 3 is used, 
the expected size of Module 4 would be 

117747.04.2503)( 4 =×=SizeExpected . 
In this example, having multiple references 

results in three different size estimates.  A problem 
arises in deciding which multiplier should be used to 
estimate the remaining unknown modules. 

To derive the size estimate of Module 4, the 
triangular distribution of the minimum multiplier, 
geometric mean of the multipliers as a mode, and 
maximum multiplier is used.  This produces a 

distribution for *
PDFm  as shown in Figure 1. 

Therefore, the size of Module 4 is  

4
*

4 PDFPDFPDF vmSize ×= , 

which is a distribution that can be shown as a 
cumulative probability curve (Figure 2). 
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Figure 1. Cumulative distribution function of 

*
PDFm  
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Figure 2.  Module 4 size cumulative 

distribution function based on Table 3 inputs 
 
4. Application 
 

The techniques described above were applied to 
the estimation of a mission critical ground software 
delivery at JPL.  The project wished to estimate the 
size and cost of its next delivery (Delivery 2) based 
on analogy to its current delivery (Delivery 1).  

However, many actuals were not recorded during the 
current delivery and therefore needed to be 
reconstructed.  As it was easier to reconstruct effort 
data, the software team first estimated the direct cost 
of Delivery 2 through pairwise comparison to 
delivery 1 using effort as the size factor.  The direct 
effort estimate resulted in an estimate much lower 
than the project team had expected [1].  The project 
team was then convinced to attempt an estimate using 
a cost model.  Since cost models require size as an 
input, the Probabilistic Pairwise Comparison 
technique was used to estimate the size of Delivery 2.  
The Delivery 1 source code was run through a code 
counter, and the pairwise technique was then 
repeated for estimating the size of Delivery 2 using 
the modules of Delivery 1 as reference points. 

A major step in obtaining acceptance from the 
team was allowing them to think of the software in 
terms of capabilities.  This was very important since 
their cognitive model was based on the concept of 
capabilities and the team had no experience in 
estimating software size by lines of code or function 
points.  Since the pairwise comparison technique is 
based on estimating the relative size differences 
between modules, it was assumed that the relative 
difference or ratios when comparing functions by 
capability would be the same as comparing a function 
by the number of lines of code- subject to a linear 
transformation.  This is a critical assumption, which 
will be discussed in more detail at the end of the 
paper. 

The first delivery consisted of one major 
software function (Function A) that could be further 
subdivided into five modules.  The second delivery 
consisted of two major software functions (Functions 
B and C) that each had five modules.  Code counts 
for the user interface modules of each Function were 
not available, as they were in a language for which a 
code counter was not available 1.  Therefore only four 
modules of each function were compared with each 
other.  The four modules for each second delivery 
software function were compared with the four 
modules of the first delivery software function based 
on their relative size.  Function B and Function C 
were not compared with each other, because the two 
software functions would be developed by different 
people who found it difficult to compare functions 
that had not been developed yet.  Therefore the 
pairwise judgment matrix of this exercise produced 

                                                 
1 The cost of the user interfaces for Function B and Function C 
were estimated in a different manner, using direct effort 
comparisons, since size references were not available for the user 
interface module of Function A. 



 

 

two 8 x 8 matrices with 64 possible comparisons per 
matrix.  (Figure 3 and Figure 4).    

A significant adaptation to the paired 
comparisons method described by others is that the 
estimators were allowed to give ranges for  

j

i
ij Size

Size
a = , where  

( )maxmodeminTriPDFa ij ,,~ . 

These ranges were easily captured and a Monte Carlo 
distribution of the ratio scales was easily 
implemented in Microsoft Excel©.    

 
Figure 3.  Original comparison inputs for Function B vs. Function A modules 

 

Figure 4.  Original comparison inputs for Function C vs. Function A modules 

Quadrants II and III (Figure 5) of the matrices 
were easily completed utilizing the judgment matrix 
properties: aij =1/aji and aii = 1.  Since Delivery 1 was 
completed and all the actuals were known (Table 5), 
Quadrant IV was derived with the actuals as 
reference points.  For example, it is known from 
actuals that the development size of Force Models 
was approximately 1.45 times more than Event Based 
Integration effort and 1.48 times more than the Partial 
Derivatives effort, etc.  As quadrant IV is based on 
actuals, it is the only consistent quadrant, satisfying 

the property aij x ajk = aik.  Since the other three 
quadrants are based upon subjective judgments, they 
are unlikely to be consistent. 

The matrix was completed such that a triangular 
random variable draw formula was entered in the 
cells for which ranges were given (Figure 5).   

The geometric mean of the rows for the matrix 
was then computed to arrive at the ratio scale vector 
(labeled Geometric Mean PDF in Figure 6).   

 

 

 
Figure 5.  Random variable formulas are entered in cells for elements with a range of comparisons 
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3Code Counts derived using Galorath’s Count95 tool. 

Table 5.  Actual size of reference modules3 
 Actual Size (SLOC) 
Force Models  6,500 
Event Based Integration 4,500 
Partial Derivatives 4,400 
Core Integration 10,000 
User Interface Code count not available 

 

 
Figure 6.  A single multiplier PDF *

PDFm  is derived from the multiple reference multipliers and 

estimates are a function of *
PDFm  

As there were multiple references (four modules 
from Delivery 1), computing the reference multiplier 
required extra steps.  Since the subjective pairwise 
judgments were inconsistent in this application, four 
reference mo dules produced four different 
multipliers, each producing significantly different 
estimates.  A Monte Carlo run on the triangular 
random draw of the four multipliers using the lowest 
value multiplier as a minimum, the geometric mean 
of the four multipliers as the mode, and the highest 
value multiplier as a maximum was performed: 

( )iermaxMultiplerGMmultipliierminMultiplTriPDFPDFm ,,~
*

. 

An estimate of each Delivery 2 module was then 
calculated using the new randomly drawn 

multiplier *
PDFm .  

Allowing ranges in the pairwise judgments and 
drawing from the four possible multipliers capture 
the uncertainty in the estimate and serve to average 
out estimation errors.  Utilizing a Monte Carlo 
technique produces size cumulative distribution 
functions for each module of the Delivery 2 
functions, each Delivery 2 function, and the total 
Delivery 2 size. Table 6 and Table 7 show the 
resulting distributions of each element in Function B 
and Function C respectively, as well as the total size 
of each function in delivery 2. 

Table 6.  Function B size estimates 

 Core Mapping Smoother Stochastics 
Function B 
Total SLOC 

5th Percentile 3621 2800 3316 5880 15898
Mode 5740 3831 4985 10374 22211

95th percentile 6796 5230 6444 11878 29950



 

 

Table 7.  Function C size estimates 

 
Measurement 

Models 
Delay 

Models 
File 

Formats Stations 
Function C 
Total SLOC 

5th Percentile 8209 3100 4525 3976 19866
Mode 10737 3789 5971 4833 24356

95th percentile 12837 4897 7053 6241 30899
 
 
5. Results 
 
Delivery 2 was completed in nine months and within 
10% of the budget with 24,506 lines of code.  Not all 
of the original capabilities were included in the 
release.  The task leads subjectively estimated the 
differences between the planned module capabilities 
and the capabilities actually delivered, which varied 
from 0 to 100%, with most modules at 90% of the 
plan.  While Function B delivered 90% of its 
capabilities, Function C delivered significantly 
reduced capability than planned.  Almost none of the 
Delay Models functionality was delivered.  Only 
50% of Measurement Models and 90% of File 
Format capabilities delivered.  The size estimates 
were adjusted for the differences in planned 

functionality and are compared with the actual sizes 
in Table 8 and Table 9. 

Functions B and C were collectively 
overestimated by 44%.  The team’s estimate also 
produced a very wide range across the modules.  On 
the surface, this appears to be a mediocre 
performance, but compared to an average size 
underestimate of 70% on JPL Deep Space Network 
subsystems upgrades (from 1989 to 1997) and 
underestimates in excess of several hundred percent 
on recent JPL flight software systems, it is a marked 
improvement, especially considering that the team 
had virtually no experience in estimating size by lines 
of code. Also note that the actuals on most of the 
functions fall outside of what was estimated as the 5th 
to 95th percentile which indicates the estimate range 
is to narrow.  This type of problem is well 
documented in the literature and can be adjusted for.  

Table 8. Function B delivered software size vs. adjusted size estimates 

Core Mapping Smoother Stochastics Total SLOC

5035 6115 244 748 12142

5th Percentile 3259 2520 2984 5292 14308

Mode 5166 3448 4487 9337 19990

95th Percentile 6116 4707 5800 10690 26955
3% -44% 1739% 1148% 65%

Actual Sizes

*Original estimates were adjusted to reflect the actual percentage of functionality delivered.
% Deviation from Mode
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Table 9. Functions C delivered software size vs. adjusted size estimates 

Measurement 
Models

Delay 
Models File Formats Stations Total SLOC

1959 689 7611 2105 12364
5th Percentile 4105 0 4073 3976 12187
Mode 5369 0 5374 4833 14976
95th Percentile 6419 0 6348 6241 18928

174% -100% -29% 130% 21%
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% Deviation from Mode
*Original estimates were adjusted to reflect the actual percentage of functionality delivered.

FUNCTION C

Actual Sizes

 
 
In interpreting the results, it is necessary to take into 
consideration that the team estimated modules by 
subjectively comparing relative differences in 
capability - not lines of code. It was then assumed 
that a pairwise comparison of capabilities was 
equivalent to a pairwise comparison of software size 
as measured by lines of code. This is what we earlier 
refereed to as a key assumption.  This assumption 
was necessary.  The results suggest that there are 
fundamentally different types of capabilities that 
need to be estimated separately that correspond to 
algorithmic and procedural code. The two modules, 
which are off by an order of magnitude, are Smoother 
and Stochastics in Function B.  These two modules 

are very algorithmically intensive, such that six 
months was spent in deriving and implementing the 
algorithms for 200-800 lines of code.  If these two 
algorithmically intensive elements are excluded from 
the analysis, the total size estimate is within 30% of 
the actual (Table 10).  This result strongly suggests 
that pairwise comparisons between capabilities can 
be used to estimate relative differences in size for 
procedural code but not algorithmically intensive 
code.  This result is not particularly surprising, as a 
number of authors have also noted problems with the 
function point sizing metric when estimating 
algorithmically intensive code.  

Table 10. Function B actual size vs. adjusted size estimate excluding algorithmic elements 

Core Mapping Total SLOC**
5035 6115 11150

5th Percentile 3259 2520 5791

Mode 5166 3448 8200

95th Percentile 6116 4707 10810
3% -44% -26%

** Excluding the algorithmically-intensive Stochastics and Smoother elements.
*Original estimates were adjusted to reflect the actual percentage of functionality delivered.

Actual Sizes

% Deviation from Mode
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6. Conclusion 
 

The pairwise comparison technique is a general 
purpose estimation approach for capturing expert 
judgment and can be relatively easily implemented 
using Microsoft Excel© if the geometric mean method 
is used to derive the ratio vector V.  In this document, 
it has been documented how this approach can be 
further expanded into a probabilistic version using 
Monte Carlo methods in order to produce estimates 

of size distributions.  The probabilistic pairwise 
comparison technique enables the estimator to 
systematically incorporate both estimation 
uncertainty as well as any uncertainty that arises from 
using multiple historical analogies as reference 
modules.  Since these results are only suggestive of 
the methods effectiveness, more work clearly needs 
to be done to verify the effectiveness of this 
approach; it does appear that it can be used to 



 

 

improve software size estimates for non-
algorithmically intensive code.   

Some changes in approach that could improve 
the techniques performance are to formally 
incorporate multiple estimators, which the technique 
can easily handle.  Another is to assume that the 
distributions are correlated instead of independent as 
was done in the current study.  Both of these changes 
ion approach should increase the estimated size 
variances and hence ranges for the 5th and 95th 
percentiles. 

One natural extension of this analysis is that if 
all pairwise comparisons are assumed to be log 
normally distributed, a relatively simple closed form 
solution exists for deriving the estimated size 
distributions as a function of the means.  Standard 
deviations of the pairwise comparisons and the 
Monte Carlo computations would not be necessary.  
The disadvantage of this approach is that it has been 
found in practice to be easier for engineers to 
estimate low, most likely and a high than to 
subjectively estimate a mean and variance of a 
distribution, especially if it is skewed, as in a log 
normal distribution.   

The most important result of this study may be 
sociological in nature.  The study proved to be a 
relatively successful example of introducing 
quantitative techniques into a skeptical software 
development team.  Working with the technical staff 
in a way that they preferred and that was consistent 
with their cognitive models allowed us to engage 
them, eventually leading to a relatively rigorous size 
estimate and use of a cost model. 
 
7. References 
 
[1] Lum, K., and Hihn, J., “Estimation of Software Size and 

Effort Distributions Using Paired Ratio Comparison 
Matrices,” Proceedings of the 3rd Annual Joint 
Conference of the International Society of Parametric 
Analysts (ISPA) and Society of Cost Analysis and 
Estimation (SCEA), 17-20 June, 2003, Orlando, FL. 

[2] Hihn, J.M. and Habih-agahi, H. “Cost Estimation of 
Software Intensive Projects: A Survey of Current 
Practices,” Proceedings of the Thirteenth IEEE 
International Conference on Software Engineering, 
May 13-16, 1991.  (also SSORCE/EEA Report No. 2. 
August 1990) 

[3] Saaty, T.  The Analytic Hierarchy Process, McGraw-
Hill, New York, NY: 1980. 

[4] Saaty, T. “A Scaling method for Priorities in a 
Hierarchical Structure”. .J. Math. Psychology Vol. 15 
1977, p 234-281. 

[5] Bozoki, G. “Software Size Estimator (SSE),” Centre 
National d'Etudes Spatiales (CNES), Toulouse, France, 
June 1986. 

[6] Lambert, J. “A Software Sizing Model,” Journal of 
Parametrics, Vol. Vi, 1986, pp75-87. 

[7] Bozoki, G. “An Expert Judgment-Based Software 
Sizing Model,” Journal of 

    Parametrics, Volume XIII, Number 1, May 1993. 
[8] Shepperd, M. and Cartwright M. “Predicting with 

Sparse Data,” IEEE Transactions on Software 
Engineering, Nov. 2001, Vol. 27, No. 11. 

[9] Miranda, E.: “Establishing Software Size Using the 
Paired Comparisons Method.” Proc. of the IWSM'99, 
Lac Superieur, Quebec, Canada, September 1999, pp. 
132-142   

[10] Crawford, G. “The Geometric Mean Procedure for 
Estimating the Scale of a Judgment Matrix," 
Mathematical Modelling, vol. 9. No.3-5, pp. 327-334. 
1987. 

[11] Hihn, J.M. and Johnson, C. “Evaluation Techniques 
for Paired Ratio Comparison Matrices in a Hierarchical 
Decision Model,” Measurement in Economics , 
Physical-Verlag Heidelberg, 1988. 

[12] Crawford, G. and Williams, C "The Analysis of 
Subjective Judgment Matrices," Rand Corporation, R-
2572-1-AF, May 1985.  A Project AIR FORCE report 
prepared for the USAF. 

[13] Miranda, E. “Improving Subjective Estimates Using 
Paired Comparisons,” IEEE Software, Jan/Feb 2001. 

 
 


